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Abstract

Multidimensional projection has emerged as an important visualization tool in applications involving the visual
analysis of high-dimensional data. However, high precision projection methods are either computationally expen-
sive or not flexible enough to enable feedback from user interaction into the projection process. A built-in mech-
anism that dynamically adapts the projection based on direct user intervention would make the technique more
useful for a larger range of applications and data sets. In this paper we propose the Piecewise Laplacian-based
Projection (PLP), a novel multidimensional projection technique, that, due to the local nature of its formulation,
enables a versatile mechanism to interact with projected data and to allow interactive changes to alter the pro-
Jection map dynamically, a capability unique of this technique. We exploit the flexibility provided by PLP in two
interactive projection-based applications, one designed to organize pictures visually and another to build music
playlists. These applications illustrate the usefulness of PLP in handling high-dimensional data in a flexible and
highly visual way. We also compare PLP with the currently most promising projections in terms of precision and

speed, showing that it performs very well also according to these quality criteria.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques— H.5.0 [Information Interfaces and Presentation]: General—

1. Introduction

Much research has been done on creating mechanisms to
handle multi-valued data. In visualization, most approaches
rely on feature spaces to devise visual tools that assist in
analyzing high-dimensional data. Among these techniques,
multidimensional projection (MP) techniques have been
playing an important part, even becoming an essential tool
in recent visualization systems [DANS10, CWDHO09], par-
ticularly due to the fact that they can, like no other method
of visual analysis, handle large number of attributes and in-
creasingly high numbers of data items successfully.

Despite their increasing acceptance, some drawbacks of
multidimensional projections restrict their use as fully in-
teractive visual exploration tools capable of accompanying
the analysis process to completion. For example, most mul-
tidimensional projection methods are global, that is, a sin-
gle global transformation maps data instances from a high-
dimensional space to the visual space. This global nature
leads to difficulties maintaining locally the properties of
grouping and group separation that they reveal in the global
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layout, preventing analysis of existing correlation between
elements in a neighborhood near to points of interest in the
data set. In the large range of applications where the analy-
sis starts with overall interpretation and ends in the analysis
of smaller groups up to individuals, the global nature of the
available methods do not replicate locally, preventing local
analysis and adjustments to occur. Such local adjustments
are necessary in order to incorporate user knowledge into
the projection process. A few MP techniques provide mech-
anisms that could allow user guided local modifications, but
the local ones are computationally expensive and the global
ones very limited on the types of changes they allow.

In this paper we propose a novel multidimensional pro-
jection technique, the Piecewise Laplacian-based Projection
(PLP). In contrast to most existing methods, PLP has a lo-
cal character that renders it more versatile than other projec-
tion schemes in addressing the drawbacks discussed above.
To complete the proposed solution, we present a mechanism
for locally changing the projection, in accordance with user
interaction, in such a way that the mapping itself adapts to
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user manipulations of the layout during visual exploration.
This mechanism can be combined with the local nature of
PLP so as to allow for drastic changes in the projection map,
enabling the exploration and organization of the data in a
flexible and dynamic way. The provided flexibility can be
exploited in many applications. We exemplify the cases of
user-driven picture organization and music playlist construc-
tion, (see Section 5).

Computation efficiency and accuracy are the other impor-
tant properties of PLP. As the results show (Section 4), when
compared to 10 other techniques employing 8 data sets vary-
ing from 1,500 to 250,000 points, PLP turns presents ac-
curacy e performance comparable to the best existing tech-
niques while still enabling interactive user intervention. The
accuracy combined with layout dynamic adaptation render
PLP an attractive projection technique for problems involv-
ing interactive exploration of large multidimensional data.

The contributions of this paper can be summarized as:

e PLP: A novel technique that relies on local rather than
global maps to project high-dimensional data to visual
space (Section 3). Accuracy is comparable to the best
existing techniques, but, unlike most existing techniques,
the projection is interactively steerable.

e Neighborhoods from Visual Space: A new mechanism
to define neighborhoods in the high-dimensional space
through manipulation of the visual space (Section 3.3),
which allows for drastic changes in the local maps, in
order to adapt them to the perception the user has of the
data distribution.

e Real Data Case Studies: Improvement in applicability of
multidimensional projections. Section 5 shows the de-
sign of an application based on PLP to visually organize
pictures and to create music playlists. To the best of our
knowledge, this is the first time a multidimensional pro-
jection is explicitly employed to perform data organiza-
tion interactively.

2. Related Work

Most projection methods derive from multidimensional scal-
ing techniques (MDS). MDS methods perform embedding
into a visual space by considering only distance mea-
sures (also called dissimilarities) between pairs of instances.
When there are Cartesian coordinates for the data set, Eu-
clidean distance can be used to generate the pairwise dis-
similarities for MDS methods.

Projection and MDS methods vary greatly in terms of the
mathematical foundation they rely on. Techniques based on
spectral decomposition, for example, typically compute em-
bedding coordinates for each data instance from eigenvec-
tors of a double-centered transformation applied to the dis-
similarity matrix (symmetric matrix containing the dissim-
ilarity between each pair of data instances). Since the very

first approach proposed by Torgeson [Tor65], much effort
has been made to reduce the high computation costs asso-
ciated with the eigendecomposition [BN0O3, KCH02, FL95].
Some spectral-based methods, such as Isomap [TdSLOO],
can also deal with distance measures other than Euclidean,
thus accomplishing tasks such as “manifold unfolding”.
Although effective for dimensionality reduction purposes,
these methods have a global nature and do not provide mech-
anisms for user intervention in the result, both shortcom-
ings for many highly interactive applications with multi-
level data analysis.

Spectral-based methods that make use of a more lo-
cal methodology have also been described in the litera-
ture. An important representative is LLE [RS00]. Other
good examples are Landmarks MDS [dST04] (L-MDS) and
Pivot MDS [BP07]. LLE performs local linear fittings as
the first processing step, accomplishing the final embedding
through a global eigendecomposition approach. L-MDS and
Pivot adopt an opposite scheme, first making use of an eigen-
decomposition to embed a subset of instances, mapping the
remaining instances by an interpolation mechanism that re-
lies on the eigenvectors computed in the first step. The eigen-
decomposition introduces a “global” component to those
methods while still preventing interactive local changes.
Therefore, methods based on spectral-decomposition can
hardly be employed in interactive applications such as the
ones proposed in this paper.

Nonlinear optimization methods rely on different schemes
to find a minimum for an energy function, usually called
the stress function. First proposed by Kruskal [Kru64], op-
timization methods tend to be computationally expensive,
although reasonable performance can be reached by using
multigrid-based numerical solvers, as shown by Bronstein et
al. [BBKY06]. Following the idea of a subset of samples to
reduce computational cost, Pekalska et al. [PARDK99] pro-
posed an algorithm that first embeds a subset of samples us-
ing a gradient descent approach and then places the remain-
ing instances using a global linear mapping.

Force-based methods arose from the seminal work by
Eades [Ead84], which makes an analogy between stress
function minimization and mass-spring systems. The high
computational cost of the algorithm proposed by Eades
has been improved by Chalmers [Cha96] by making
use of neighborhood structure and a subset of samples.
Variants of Chalmers’ algorithm with lower computa-
tional cost [MRCO02,JM04, TMNO3] and GPU implementa-
tion [IMOO09, FT07] have also been proposed to speed-up
convergence and handle large data sets. While Chalmers’
method can be seen as a local approach, computational times
are still prohibitive for interactive applications.

Paulovich et al. [PNMLO8] proposed a technique called
Least Squares Projection (LSP) that uses a force-based
scheme to first position a subset of the samples, mapping the
remaining instances through a Laplace-like operator. In con-
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trast to our approach, Paulovich et. al’s method makes use
of a global graph to build the multidimensional mapping, re-
sulting in a large linear system. LSP also constraints the sys-
tem through a least square procedure, rising computational
cost considerably. Although LSP enables user intervention,
its global nature and high computational cost means that the
user can not freely change the projection layout. The same
is true for the recent linear mapping PLMP [PSN10], which
combines a force-based scheme to place representative in-
stances in the visual space with a global linear mapping. The
new PLP technique described in this paper also employs a
Laplacian matrix to carry out the multidimensional projec-
tion. However, we make use of a dynamic mechanism to de-
fine neighborhood graphs from which we build a set of local
Laplacian matrices to accomplish the mapping, thus avoid-
ing global structures such as the ones present in LSP and
PLMP.

3. The PLP Method

The PLP method is made up of three main components:
sampling, neighborhood graph building, and Laplacian lin-
ear system solving, as illustrated on the right. Sampling
refers to the selection of a small subset of instances. For
each of these samples, a neighborhood graph and a set of
control points are defined. The graph and control points
associated with a given sample are used respectively to
set and constrain the corresponding Laplacian systems.
In other words, the overall
idea is to associate a neighbor- l
hood graph and a set of con-
trol points to each given sam-
ple. Each graph gives rise to
a Laplacian matrix that accom-
plishes the projection of the
instances corresponding to the
graph nodes. Control points are
used to constrain the Laplacian
system, thus steering the positioning of projected instances
in the visual space. Projected instances can then be han-
dled by the user so as to improve the grouping of similar
instances. Neighborhood graphs and control points are dy-
namically updated during user intervention, thus modifying
the Laplacian matrices and the resulting projections. Details
on each step are presented in the following sections.

Sampling |

3.1. Sampling, Neighborhood Graphs and Control
Points

Let D = {pj,...,pa} be a data set with instances in a d-
dimensional space and S = {s1,...,5,} a subset of samples
taken from D. The way one chooses the set S may vary de-
pending on the application. For example, if the main goal is
only to project D into the visual space then samples can be
chosen using a clustering approach (see Section 4). Samples
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can also be provided by the user in order to drive the pro-
jection in accordance with a priori information. As we show
in Section 5, the freedom to define samples can be exploited
to design applications towards picture and playlist organiza-
tion.

The samples S are used to split D into m subsets D =
Dy,...,Dy, where each subset D; comprises the instances
in D closer to s; than to any other sample s;, j 7# i. The
D; subsets can be computed in O(mn) using the bisecting
k-means [SKKOO] technique. The number of samples m is
chosen as m = +/n because this is an upper bound for the
number of groups in a data set [PB95], thus most clusters
should have a representative among the sample points. The
neighborhood graph ND; corresponding to D; is defined as
the k-nearest neighbor graph (k-NNG) connecting instances
in D;. Each node in ND; represents an instance in D;. Two
nodes in ND; are connected by an edge if at least one of them
is among the k-nearest neighbors of the other. The parame-
ter k is set to 10 in our implementation, as this value turned
out to be a good compromise between computational cost
(the larger k, the more costly to build the graph) and graph
connectedness (the number of neighbors of each node). We
noticed in our experiments that when k was small (k < 5) the
graph D; became weakly connected, impacting negatively on
the result of the projection.

As mentioned before, each neighborhood graph ND; gives
rise to a Laplacian system that is used to project instances
from D; to the visual space. In order to ensure a unique so-
lution for the projections, we have to impose constraints on
the Laplacian system, which, in our case, are given through
control points. The set of control points constraining the
projection of D; is defined by randomly picking out ./n;
instances from D;, where n; is the number of instances in
D;. As discussed in [PNMLO08], ,/n; randomly chosen con-
trol points yield a good balance between computational cost
(control points have to be placed in the visual space using
costly methods) and the quality of the final mapping. The
main advantage of choosing the control points locally rather
than globally is to ensure that each subset D; has a number
of control points proportional to its number of instances, a
property difficult to attain with global selection. Details on
how to build the Laplacian matrices and their corresponding
constraints will be discussed next.

3.2. The Laplacian system

The Laplacian-based projection mechanism relies on the as-
sumption that each element p; of a data set D can be written
as a convex combination of its nearest neighbors in the visual
domain. In more mathematical terms, let p; be an instance
in D; and Viz(p;) = {pi,,.-.,pi. } be the set of nodes con-
nected to p; in ND;. Let also (xp,.f , ypl.l_) be the coordinates
of each element p;; € Viz(p;) when mapped to the visual

space R2. Assuming the convex combination hypothesis, the
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two-dimensional coordinates of p; can be written as:

Pi = (Xpiyp) = Z

pi; €Viz(pi)

0t (Xpi; »pi;) €]

where Olj > 0 and ZOL,']' =1.

Each element in D; gives rise to a vectorial equation as
described in (1), which can be assembled into two homoge-
neous linear systems:

Ix=0; Ly=0 ()

where x and y are vectors representing the x and y coordi-
nates of the mapped elements and L the matrix derived from
equation (1) given by:

1, ifi=j,
Lij =< —oyj/o;, ifi# jand p;, € Viz(p:)
0, otherwise.
where of = Z o,;j. The weight o;; can be set as the

Pij eViz(pi)

inverse of the distance between p; and p; or simply equal
to one, giving rise to the so called combinatorial Laplacian.
Although the weighted graph Laplacian can also be used
(see [PNMO6]) we choose the combinatorial Laplacian in
our implementation, since it produces good visual results
maintaining numerical robustness. As we show in Section 5,
the neighborhood graphs are dynamically updated in inter-
active applications. Designing a consistent heuristic for as-
signing weights to new edges created during user interaction
is difficult.

It can be shown that if ND; has only one connected com-
ponent then the rank of L is n; — 1. Thereby, assuming ND;
connected, the linear systems (2) admit a non-trivial solu-
tion. The lack of geometric information in (2) can lead to so-
lutions that are difficult to interpret and analyze. PLP deals
with this problem by constraining the systems with geomet-
rical information provided by the control points. The ratio-
nale is to project the control points associated with each D;
by a MDS method then use their x and y coordinates in the
visual space to constrain the Laplacian systems. In our im-
plementation we use the force-based scheme [TMNO3] to
project the control points. Since the number of control points
is just a fraction of the number of instances in D;, the high
computational cost of the force-based scheme is not an is-
sue. Additionally, we use a penalty method to constraint the
system [XZCOX09], speeding up the underlying numerical
manipulation.

An advantage of using control points to constrain the sys-
tems (2) is that we can preserve coherence when mapping
the subsets D;. In other words, if we project each D; inde-
pendently, no guarantee can be given towards ensuring that
neighbor subsets will be mapped close to each other in the
visual space. However, by handling the control points prop-
erly one can attain a global relationship among groups with-
out losing the local processing benefit of PLP. More specifi-

Figure 1: Left: Control points from all D; simultaneously
embedded in the visual space and used to constrain the
Laplacian systems of PLP. Right: Projection from a single
global Laplacian system constrained by the same control
points used on the left. PLP (left) is more accurate (lower
stress) and faster.

cally, the global relation can be built as follows: Let C; be a
set of control points chosen from a subset D;. Consider now
the set C =Cy,...,Cy comprising the union of control points
from all subsets D;, i = 1,...,m. The set C can be seen as a
new data set containing a fraction of the instances from D.
If the set of control points C is embedded in the visual space
using the force-based scheme, the obtained x and y Cartesian
coordinates of the control points originating from a particu-
lar subset D; will be in accordance with the control points
of other subset D;, thus reintroducing the global correspon-
dence among the subsets lost during the partition stage. This
global control point mapping will keep similar groups close
to each other, setting apart dissimilar subsets.

Figure 1 shows a comparison of projecting a data set us-
ing the PLP with all control points embedded simultaneously
(left) and the layout produced by using the same control
points but a single Laplace system (right) — the approach
employed by LSP. Both approaches produce similar results,
however, PLP turns out to be more accurate (lower stress)
and computationally faster.

3.3. Handling Control Points and Neighborhood
Graphs

As shown above, PLP can present a global behavior if con-
trol points from all subsets D; are simultaneously embedded
into the visual space using a global MDS approach. How-
ever, the local nature of PLP allows for modifying the pro-
jection in accordance with user intervention.

The rationale is to carry out local modifications by chang-
ing the neighborhood graphs and control points. More
specifically, suppose a data set D has been projected using
the procedure described in the previous section (Figure 2(a)).
The user can interact with projected instances, picking out
a particular instance p (overline will be used to denote in-
stances in the visual space) in the visual space and dragging
it to a new position, as illustrated in Figure 2(b).

Let ¢ € C be the control point closer to p and D¢, D) be
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Figure 2: Given a projection (a) the user can drag and reposition projected instances (b). Neighborhood graphs are updated to
reflect the user defined neighborhood relationship (c), thus modifying the Laplacian matrices and the projection (d).

the subsets containing ¢ and p respectively. There are two
cases to be considered, either p € D¢ or p ¢ De. If p is in D¢
then ND), = ND. and the only change we carry out is to add
an edge connecting p to ¢ in neighborhood graph, which in-
duces a change in the Laplacian matrix associated to NDe. If
p ¢ D¢ then we not only add an edge connecting p and ¢ but
also move p and its neighbors from NDp to ND,, as illus-
trated in Figure 2(c). If NDp becomes disconnected due to
the removal of p then we add new edges between the discon-
nected parts. The new edges connect the 10 nearest samples
in both disconnected parts. This heuristic violates the KNN
property, but ensures full rank for the Laplace system.

In short, the graph updates are just enforcing instances to
become neighbors in the neighborhood graph, even though
they are far from each other in the original high-dimensional
space. Figure 2(d) illustrates the resulting projection af-
ter updating neighborhood graphs with the new user-driven
neighborhood relationship.

We also consider the possibility of just separating groups
of instances. If the user drags p to a position in the visual
space where its distance to ¢ is larger than a threshold then
we consider, the user wishes to create a new subset D;. In
this case, we run the procedure described in 3.1 in the subset
Dp, using p as a new sample.

The novelty in the process described above is to drive
changes in the neighborhood graph by interacting in the vi-
sual space. This mechanisms allows the user to interact with
projected data quite freely, visually regrouping and segment-
ing the data, as we show in the following.

4. Results and Comparisons

In this section we present the results of applying PLP to
project several distinct data sets. We also provide a compre-
hensive set of comparisons to assess the accuracy and speed
of PLP. All the results were generated in an Intel Core™
i7 CPU 920 2.66GHz, with an NVIDIA® Quadro FX 3800
video card and 8GB of RAM. PLP is implemented in Java, as
is the numerical solver — we use the Cholesky factorization
available on Java Colt Project (http://acs.1lbl.gov/
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~hoschek/colt/). We are using Cholesky because two
linear systems have to be solved and the factorization of one
system can be used in the solution of the other, resulting in a
performance gain.

We start by showing how the PLP handles the unfold-
ing problem, as presented in Figure 3. Figure 3(a) shows
the so called Swiss Roll data set and Figures 3(b) and 3(c)
present the resulting PLP projection when a force-based
scheme [TMNO3] and the Isomap [TdSLOO] are respectively
employed to embed control points in the visual space. Notice
that PLP is able to unfold the surface when Isomap is em-
ployed to project control points (Figure 3(c)). For the sake
of comparison, Figure 3(d) shows the result of projecting
the Swiss Roll data set with the PLMP [PSN10]. PLMP also
requires as first step the projection of a subset of represen-
tatives, and in Figure 3(d) we employed Isomap to embed
the required representatives. Due to its global nature, PLMP
could not unfold the Swiss Roll, even though geodesic dis-
tances have been used to project representatives.

Although PLP has been tailored mainly to be an interac-
tive projection tool, accuracy and computational time are
both competitive. We have employed eight distinct data
sets in our experiments, some of them synthetic, allowing
comparison between PLP’s performance and other available
techniques employing data sets that vary both in size and
data dimensionality. The data set WDBC is a breast cancer
data set obtained from digitized images of breast masses.
It has 539 instances in thirty-dimensional space that have
been classified into two distinct groups: malignant and be-
nign cancer. Wine-red (1,599 instances with 11 dimensions)
and Wine-white (4,989 instances with 11 dimensions) are
related to red and white variants of the Portuguese “Vinho
Verde” wine.

The Segmentation (2,100 instances in 19 dimensions)
data set is composed of features of 3 x 3 regions of a set
of 7 outdoor manually segmented images. Shuttle (43,500
instances with 9 dimensions) is composed by log informa-
tion instances split into 7 different classes. The Mammals
(10,000 with 72 dimensions) is an artificially generated data
set representing different features of mammals belonging to
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Figure 4: original-distance x projected-distance scatter plots. From left to right PLP, PLMP [PSNI10],
Fastmap [FL95], Hybrid [JM04], Landmarks MDS [dST04], L-Isomap [dSTO3], LSP [PNMLOS], Pekalska [ PARDK99], Pivot-
MDS [BPO7], Random Projection [Ach03 ] and Glimmer [IMOO09]. Top-left numbers are respectively the normalized stress and

computational time in seconds.

four distinct classes (dogs, cats, horses, and giraffes). Vis-
contest (30,000 instances with 10 dimensions) corresponds
to a sample of time step 99 of a data set containing in-
formation from a simulation of an ionization front insta-
bility propagation during the formation of a galaxy. The
Viscontest data set was obtained from the IEEE Visualiza-
tion 2008 Contest data set [WNO8] and the remaining ones
were recovered from the UCI Machine Learning Reposi-
tory [ANO7]. Finally, Fibers (250,000 instances with 30
dimensions) was obtained from the 2009 Pittsburgh Brain
Competition (PBC) — Brain Connectivity Challenge (http:
//pbc.lrdc.pitt.edu/).

Figure 4 shows a comparison of PLP with ten other
techniques, including two state-of-the-art methods in
terms of projection methods for visualization, namely,
PLMP [PSN10] and Glimmer [IMOOQ9]. These ten methods
have been chosen because they are shown to be, amongst

the studied methods, the ones that present the best trade-
off between accuracy and running times. The original-
distance X projected-distance scatter plots clearly
show that PLP outperforms most of the techniques, since it
results in an almost 45° diagonal layout, meaning that orig-
inal distances are well preserved in the resulting projection.
Numbers at the top-left of each plot correspond to compu-
tational time in seconds and the normalized stress given by
T2
% (d and d are the distance between instances p;

and p; in the original and visual space).

Besides demonstrating the effectiveness of PLP, the
original-distance X projected-distance scatter
plots also bring out issues that are not apparent from error
measures such as the normalized stress. Note for example
in Figure 4 that L-Isomap presents a low stress value when
projecting the Fibers data set. However, one can easily no-
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Figure 3: Unfolding problem. (a) The Swiss Roll data set.
(b) PLP using force-scheme and Euclidean distances to em-
bed control points. (c) PLP using Isomap to embed control
points. (d) PLMP using Isomap to embed representative in-
stances.

tice from the scatter plot that distances are not consistently
preserved by L-Isomap. The opposite is also true, the scat-
ter plot generated by projecting the Shuttle data set using
Pekalska technique results in a high value of stress, but dis-
tances do not deviate significantly from the ideal 45° line.

Figures 6(a) and 6(b) depict boxplots generated from nor-
malized stress and computational times, shown on top-left of
each plot in Figure 4. It is evident from Figure 6(a) that PLP
is one of the most accurate methods, figuring among the best
methods described in the literature, such as Pekalska and
L-MDS. Regarding computational times, Figure 6(b) shows
that PLP is at least an order of magnitude slower than PLMP,
Fastmap, L-MDS and Random.

Regardless of the loss in processing time against other
similarly accurate methods, the values are motivating
enough for developing interactive applications of large data
sets. In terms of the interaction capability, and particularly
on the dynamic of changes, PLMP is the only method that
enables interactive modification to the projection map while
being faster than PLP.

In the issue of dynamic changes lies the greatest advan-
tage of PLP. The intrinsic local nature of PLP supports dras-
tic changes in the projection to be fed back into the mapping
process so as to reconstitute mapping to be in the form de-
fined by the user. This particular feature is not shared by
PLMP, as Figure 5 clearly shows. Notice from Figure 5(b)
that PLP was able to preserve the groups defined by user
handling of the control points interactively. Due to their
global nature, PLMP and LSP could not strictly follow the
displacement of the control points (see Figures 5(c) and
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Figure 5: Changing the projection map by repositioning
control points. Top right window shows the position of the
control points. (a) Projection generated by PLP; control
points embedding by force scheme. (b) PLP after reposition-
ing control points in accordance with its classes. (c¢) and (d)
Projections generated by PLMP and LSP respectively using
the same control points as in (b).

5(d)). Therefore, PLP is the only technique capable of fol-
lowing a user-driven layout with acceptable computational
cost.

It is important to point out that computational times shown
in Figures 4 and 6(b) include the time spent to compute the
groups D;, the neighborhood graphs, the placement of con-
trol points, the Laplace matrices, Cholesky factorization, and
the projection itself. During user interaction, though, updates
take place only locally, thus demanding just small changes in
the underlying structures. In fact, localized changes can be
accomplished very quickly. In the tests we have carried out,
PLP took around 90ms to update each subset D; that had
changed after user interaction, considering a projection with
250,000 instances. This rate demonstrates PLP to be a fully
interactive high dimensional data exploration and organiza-
tion tool, as we show in the applications described below.

5. Applications

Many data visualization problems can be benefitted from
having a projection that can be guided by user knowl-
edge through flexible interaction with the projected data.
To demonstrate this, we have integrated the PLP framework
in two visual data exploration and organization applications



1098 Paulovich et al. / Piecewise Laplacian-based Projection

0.8

0.7

0.6

Time (in seconds)
s =
S 1)

L >

[

=
x
e
el
o
;, (I

2 Q QR & ) R K > o
M o @ R O s NG O
Q S @,}« & ¥ \'10“\ M Qz‘@\e 5 W

(b)

Figure 6: Stress and computational times boxplots.

that are based on similarity. One application is a system to
organize sets of images, and the other is a system to support
the creation of music playlists. The idea is to ask the user to
provide a set of “seeds” (the samples discussed in Section 3)
from which the subsets D; and the control points are defined.
Control points are embedded in the visual space using the
force-based scheme and they can be manipulated to improve
grouping of similar instances. Finally, the whole data set is
projected onto the visual space using the Laplacian maps.

Image Grouping We use the Caltech database in our im-
age grouping experiments. The data base contains 3,812 col-
ored images organized in 6 unbalanced classes: airplanes
(1074 images), buildings (750 images), cars (526 images),
faces (450 images), leaves (186 images) and motorbikes
(826 images) [FPZ03]. We employ the bag-of-visual fea-
tures (BoVF) [YJHNO7] approach to compute the image fea-
tures. The BoVF was set with a “vocabulary” of 150 fea-
tures. The vocabulary was built from 50,000 keypoints ob-
tained with the Harris-Laplace point detector and dense sam-
pling [MTS*05]. Features from each keypoint were then ex-
tracted with the SIFT method [Low04].

Notice from Figure 7 that before user manipulation the
projection of the pictures overlaps different classes. The
user can modify the projection map to improve or create
new groups of similar instances in the projection (see Fig-
ure 7(b)). We have implemented a selection tool that allows

(b)

Figure 7: (a) Projection of image collection. Control point
positioning by force scheme. Color border is class. Separa-
tion is not good. (b) New projection repositioning control
points. Separation is good. Top right window is position of
control points.

to pick out and displace a set of projected instances simulta-
neously, making the re-arrangement of control points a sim-
ple task. Fewer than thirty interactions were needed to orga-
nize the pictures as presented in Figure 7(b). In this appli-
cation control points are directly handled, but any projected
instance can be moved freely to change projection maps and
thus the final layout. In that case the control points closer to
the moved instances are also moved.

Playlist Construction The image grouping system pre-
sented above can be modified to generate music playlists.
We use a database with 3,857 music tracks and JAudio
Tool [FMO06] is used to extract low-level features from mp3
files, such as beat points, statistical summaries, and so on,
resulting in vectors with 78 dimensions.

Figure 8 shows screen shots of the system. The user starts
by selecting a few music tracks (seeds) from a list contain-

(© 2011 The Author(s)
Journal compilation (© 2011 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 8: Playlist maker: User selects seed tracks (top-left).
Control points are embedded in the visual space and some
of them are displayed (a). User interacts with control points
grouping the most similar ones (b). Projection of the whole
data set and playlists creation(c).

ing the names of the artists and music titles (top-left screen in
Figure 8). The system uses the user selected music tracks as
samples. Some samples are also automatically computed to
represent music tracks that are very different from the ones
provided by the user. The idea is to create groups that rep-
resent music tracks the user is not interested in, which work
as repositories for songs and pieces that should not be in the
playlists.

From the user-defined as well as automatically computed
seeds, the system computes the groups and the control points
associated with each group. The control points are embed-
ded in the visual space by the force-based scheme and some
of them are displayed in the system main window (Fig-
ure 8(a)). The whole set of control points is not displayed to
avoid cluttering. The user can then interact with the control
points, dragging music tracks around to change the projec-

(© 2011 The Author(s)
Journal compilation (©) 2011 The Eurographics Association and Blackwell Publishing Ltd.

tion and thus the arrangement of songs that make up the ini-
tial playlists (Figure 8(b)). Finally, the whole data set is pro-
jected, with playlists defined by the instances belonging to
the neighborhood graphs containing the user-defined seeds
(Figure 8(c)).

An advantage of the system prototype described above is
that multiple playlists can be built simultaneously, making
the creation of playlists a less time consuming task (see the
accompanying video). To the best of our knowledge, this is
the first time a multidimensional projection technique has
been employed as a user driven data organization tool.

6. Conclusions, Discussion and Limitation

The comparisons presented in Section 4 clearly show that
PLP is an efficient projection scheme, surpassing, in certain
requisites such as accuracy and interactivity, the state-of-art
methods. Its good performance is a consequence of combin-
ing piecewise Laplacian mappings with a new mechanism to
update neighborhood graphs, which enables local modifica-
tion of projections in a cost effective way. The original-
distance X projected-distance scatter plots provide
a convincing visual evidence of the accuracy of PLP while
also supporting the assessment of the accuracy of other pro-
jection methods. Another important characteristic of PLP is
its simplicity, essentially requiring the construction of neigh-
borhood graphs, Laplacian matrices and a numerical linear
solver.

The idea of dynamically updating neighborhood graphs
in accordance with user intervention not only allows updat-
ing the underlying structures efficiently but also provides a
natural mechanism to define groups. The nodes of each con-
nected graph resulting from user interaction corresponds, in-
deed, to instances belonging to the same group. We have ex-
ploited that property to create music playlists.

A limitation of PLP is that the computational cost to up-
date neighborhood graphs during interaction depends on the
number of instances handled simultaneously. That might be
a problem if the user selects a large number of instance to
be repositioned simultaneously, as most of the neighborhood
graphs have to be updated, thus resulting in intensive compu-
tation that could impact interactivity. Neighborhood graphs
containing too few or too many instances may appear after a
large number of interactions, which can also affect the per-
formance of the system. A possible solution is to keep track
of the number of elements in each graph, merging small
graphs and splitting large ones.
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